منابع مشابه
Online Deep Learning: Learning Deep Neural Networks on the Fly
Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch learning setting, which requires the entire training data to be made available prior to the learning task. This is not scalable for many real-world scenarios where new data arrives sequentially in a stream form. We aim to address an open challenge of “Online Deep Learning” (ODL) for learning DNNs on the fly in an on...
متن کاملPorosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملLearning from LDA Using Deep Neural Networks
Latent Dirichlet Allocation (LDA) is a three-level hierarchical Bayesian model for topic inference. In spite of its great success, inferring the latent topic distribution with LDA is time-consuming. Motivated by the transfer learning approach proposed by Hinton et al. (2015), we present a novel method that uses LDA to supervise the training of a deep neural network (DNN), so that the DNN can ap...
متن کاملGradual Learning of Deep Recurrent Neural Networks
Deep Recurrent Neural Networks (RNNs) achieve state-of-the-art results in many sequence-to-sequence tasks. However, deep RNNs are difficult to train and suffer from overfitting. We introduce a training method that trains the network gradually, and treats each layer individually, to achieve improved results in language modelling tasks. Training deep LSTM with Gradual Learning (GL) obtains perple...
متن کاملDeep Q-Learning With Recurrent Neural Networks
Deep reinforcement learning models have proven to be successful at learning control policies image inputs. They have, however, struggled with learning policies that require longer term information. Recurrent neural network architectures have been used in tasks dealing with longer term dependencies between data points. We investigate these architectures to overcome the difficulties arising from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Thoracic Imaging
سال: 2020
ISSN: 0883-5993
DOI: 10.1097/rti.0000000000000482